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Abstract
The ground state and finite-temperature properties of polarons are studied considering a
two-site and a four-site Holstein model by exact diagonalization of the Hamiltonian. The
kinetic energy, Drude weight, correlation functions involving charge and lattice deformations,
and the specific heat have been evaluated as a function of electron–phonon (e–ph) coupling
strength and temperature. The effects of site diagonal disorder on the above properties have
been investigated. The disorder is found to suppress the kinetic energy and the Drude weight,
and reduces the spatial extension of the polaron. Increasing temperature also reduces the kinetic
energy, Drude weight and the polaron size when the e–ph interaction is weak or intermediate.
For strong coupling the effect of temperature is small but opposite. For sufficiently strong
coupling the kinetic energy arises mainly from the incoherent hopping processes owing to the
motion of electrons within the polaron and is almost independent of the disorder strength. The
specific heat shows a peak in the intermediate range of coupling, and the peak is suppressed in
the presence of disorder. From the coherent and incoherent contributions to the kinetic energy,
the temperature above which the incoherent part dominates is determined as a function of e–ph
coupling strength.

1. Introduction

Study of different properties of polarons has been of great
importance since the evidence of polaronic charge carriers in
many materials of recent interest, namely high-Tc cuprates [1],
CMR-manganites [2], biological materials like DNA [3], etc,
which have large technological potential and importance. In
the simplest Holstein model an electron in a narrow tight-
binding band interacts locally with dispersionless optical
phonons. For large e–ph coupling the resultant polaron is a
small polaron with high effective mass [4, 5], while for weak
coupling it becomes a large polaron having a much lower
effective mass for a finite adiabatic parameter. The cross-
over from a large to a small polaron and the corresponding
changes in the polaronic properties in the ground state have
been studied for the Holstein model by different groups [6–16]
using various methods to enrich our understanding in this
field. However, studies on the effects of finite temperature
and disorder on polaronic properties are few and need more
attention. Shinozuka and Toyozawa [17] studied disorder-
induced self-trapping in a tight-binding model in which the
local site energies are randomly distributed between two values

and found that the exciton–lattice interaction acts with the
disorder to produce severe localization associated with a self-
trapped exciton. In their study the lattice vibration was treated
as a classical oscillator. Bronold et al [18] studied a similar
model but with an infinite coordination number within the
dynamical coherent potential approximation. Bronold and
Fehske [19] followed statistical dynamical mean field theory
to predict localization of small polarons by extremely small
disorder. The effect of site diagonal disorder on the polaronic
size and kinetic energy was investigated by us for a two-site
system [20] and on a many-site system [21] by approximate
methods only in the ground state.

In this paper we will consider a two-site and a four-site
Holstein model and follow an exact diagonalization method to
study the ground state as well as finite-temperature properties
of the polarons and the effect of disorder on them. We will
mainly study the kinetic energy, correlation functions involving
charge and lattice deformations, Drude weight and the specific
heat of the systems as a function of e–ph coupling for different
temperatures and disorder strength. The temperature variation
of the Drude weight and the part of the kinetic energy arising
from incoherent hopping processes have also been studied.
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This paper is organized as follows. In section 2 we
have developed the formalism for the aforementioned study
considering the Holstein model. We have presented the
results and discussions for the two-site Holstein model in
section 3.1 and those for the four-site system in section 3.2.
The conclusion is given in section 4. In appendix A we have
shown analytically, considering an infinite-size system and
following strong coupling second-order perturbation theory,
that the disorder has a weak or negligible effect on the kinetic
energy for strong coupling.

2. Formalism

The Holstein Hamiltonian with site diagonal disorder in 1d is
given by

H =
∑

i

εi c
†
i ci −

∑

i

(tc†
i ci+1 + h.c)+ gω

∑

i

ni(b
†
i + bi)

+ω
∑

i

b†
i bi (1)

where c†
i and ci are the electron creation and annihilation

operators at the site i , ni (= c†
i ci ) is the number operator,

b†
i and bi are the creation and annihilation operators for the

phonons corresponding to interatomic vibrations at site i , and
ω is the phonon frequency. Electronic hopping takes place only
between the nearest-neighbor sites with hopping strength t and
g denotes the local e–ph coupling. The electronic site energy
εi is independent of the site i for the ordered case. To study the
effect of the site diagonal disorder we would put a different site
potential at one of the sites of the two–four-site system. Spin
index is not used for the electron, because a single polaron case
has been studied here.

The third and fourth terms of equation (1) represent
the electron–phonon interaction and phonon harmonic energy,
respectively. These terms may be written in the momentum
space defined by the phonon creation operators: b†

q =
(1/

√
N )

∑
i b†

i eiq·Ri and the corresponding annihilation
operators, where N is the number of sites in the
system [7, 8, 16]. It can be easily shown that the in-phase (q =
0) phonon mode does not couple with the electron dynamics
but with the total number of electrons of the system. The
harmonic term of this phonon mode along with its interaction
with the electron may be separated out and written in a diagonal
form [7, 8]. The rest of the Hamiltonian involving (N − 1)
phonon modes and N electronic states (for a single-electron
problem) are considered to form the basis states and construct
the matrix elements. If one considers np number of phonon
states per mode then the total number of basis states will be
nTot = Nn(N−1)

p . Elimination of the in-phase mode thus
reduces the states of the Hilbert space by a factor of np.

For the electron states we use the site space basis, which
is convenient to take into account for the site disorder. For
the phonon states we use the momentum space basis so that
the in-phase (q = 0) mode may be separated out. The
Hamiltonian is then diagonalized to obtain the eigenstates and
the eigenenergies. Thermodynamic expectation value of any

observable characterized by the operator O is then found out
by

〈O〉 = 1

Z

nTot∑

n=1

〈n|O|n〉e−βEn (2)

Z =
nTot∑

n=1

e−βEn (3)

where En is the eigenenergy of the nth eigenstate |n〉, β =
1/kBT and T denotes the temperature. In this paper we are
interested in evaluating the kinetic energy, static correlation
function involving charge and lattice deformation, specific heat
and the Drude weight. The operator corresponding to the
kinetic energy is

Ht = −t
∑

i, j

′c†
i c j . (4)

For the correlation functions involving charge and lattice
deformations we calculate

χm(i) = 〈ni (b
†
i+m + bi+m)〉/2g (5)

which represents the lattice deformation produced at site i + m
when the electron is at site i . The Drude weight (Dn) in units
of πe2 for an eigenstate |n〉 of the polaronic system is obtained
by introducing a phase factor to the hopping matrix element
(t → teiφ) in order to break the time reversal symmetry and
then finding out the response of the breakdown of the time
reversal symmetry to the electric current as [22]

Dn = ∂2 En(φ)

∂φ2
|φ=0 (6)

where En(φ) is the eigenenergy of the nth eigenstate in the
presence of nonzero φ. The thermodynamic expectation value
of the Drude weight (D) is found out by taking the thermal
average of Dn over all the eigenstates

〈D〉 = 1

Z

∑

n

Dne−βEn . (7)

The specific heat may be expressed in terms of the energy
fluctuation of the system at a finite temperature T as

Cv/kB = 1

(kBT )2
[〈E2〉 − 〈E〉2] (8)

where 〈E〉 and 〈E2〉 are the thermal average of the energy and
the square of the energy, respectively.

3. Results and discussions

3.1. Two-site system

For the two-site system the electron dynamics is coupled only
to the out-of-phase (q = π) phonon mode. The Hamiltonian,
which has to be considered for numerical diagonalization,
is [20]

Hd =
∑

i

εi ni − t (c†
1c2 + c†

2c1)

+ωg+(n1 − n2)(d + d†)+ ωd†d (9)
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Figure 1. Variation of 〈ni u j 〉/2g with g+ for t = 2.1 and εd = 0.5
for the two-site Holstein model in the ground state. Solid line:
〈n1u1〉/2g, dashed line: 〈n2u2〉/2g and dashed–dotted line:
〈n1u2〉/2g = 〈n2u1〉/2g. All the energy parameters are measured in
units of ω = 1.

where g+ = g/
√

2 and d = (b1 − b2)/
√

2. We consider
the basis states c†

i |0〉e|nd〉ph, where i = 1, 2 and nd =
0, 1, 2, . . . , nm

d , is the number of phonons in the d-oscillator.
For this two-site system the results presented are obtained
using nm

d = 50. We find that the convergence in the physical
quantities in the range of our study is achieved for nm

d lower
than 50. So the results for nm

d = 50 may be considered as exact
results.

In figure 1 we have presented the variation of the
correlation function χm(i) = 〈ni ui+m〉/2g for i = 1, 2 and
m = 0, 1 (here um = bm + b†

m) for the parameters t = 2.1 and
εd = ε2 − ε1 = 0.5 (all the energy parameters are expressed
in units of ω = 1). We will refer to εd for the two-site
system as the disorder strength since it partly mimics the role
of disorder in larger systems. For the ordered Holstein model it
is well known that the on-site correlation involving charge and
lattice deformation 〈ni ui〉 is larger than the intersite correlation
〈ni ui±1〉 and with increasing e–ph coupling 〈ni ui 〉 increases
while 〈ni ui±1〉 decreases. In the presence of disorder (ε2 > ε1),
〈n1u1〉 and 〈n1u2〉 show similar behavior with increasing e–ph
coupling. However, for site 2, which have higher site energy,
the on-site correlation 〈n2u2〉 decreases with increasing e–ph
coupling and in the strong coupling region 〈n2u2〉 < 〈n2u1〉
(figure 1). These are very different from the behavior of
polarons in a ordered system. For disordered polaronic systems
the average correlation functions may be defined as

χ
avg
0 =

∑
i χ0(i)∑
i 〈ni 〉 (10)

χ
avg
1 =

∑
i χ1(i)∑
i 〈ni 〉 (11)

χ
avg
d =

∑
i (χ0(i)− χ1(i))∑

i 〈ni 〉 . (12)

These average correlation functions show the usual character-
istics, i.e. χ avg

0 increases while χ avg
1 decreases with increasing

Figure 2. Variation of the kinetic energy −〈K 〉/t (solid lines) and
the correlation function χ avg

d (dashed lines) with g+ for t = 2.1 and
different εd for the two-site Holstein model in the ground state. Solid
lines from top to bottom and dashed lines from bottom to top are for
εd = 0, 0.5, 1.0 and 2.0, respectively.

g as expected when a polaron shrinks from a large to a small
polaron with increasing coupling strength.

In figure 2 we have shown the variations of the kinetic
energy and χ avg

d with g+ for different values of εd. It is seen that
the kinetic energy is suppressed with increasing e–ph coupling
as well as with increasing disorder strength. In the intermediate
range of coupling the kinetic energy shows an exponential
suppression. For strong coupling the kinetic energy reduces
as 1/g2 and is almost independent of the disorder strength.
The strong coupling behavior may be explained following an
analytical calculation as shown in appendix A. With increasing
disorder strength the correlation χ avg

d increases (figure 2). The
figure shows that the size of the polaron becomes smaller and
the cross-over (from a large to a small polaron) occurs at a
lower value of g+ with increasing disorder strength. For strong
coupling, disorder has almost no effect on χ avg

d , similar to that
observed for the kinetic energy.

To examine the effect of temperature on the properties
of polarons, the kinetic energy and the correlation functions
are evaluated for different temperatures. In figure 3 we
have plotted the kinetic energy as a function of g+ for
different temperatures. For weak and intermediate coupling
the kinetic energy decreases with increasing temperature,
while for strong coupling the temperature has a smaller
but opposite effect, i.e. the kinetic energy increases with
increasing temperature. For very strong coupling the effect of
temperature is almost negligible. Regarding the charge–lattice
correlation we find that for weak and intermediate coupling
χ

avg
d increases, i.e. the size of the polaron becomes smaller with

increasing temperature, while for strong coupling the polaron
size becomes larger with increasing temperature.

We have studied the specific heat (Cv) of the two-site
polaronic system for different temperatures. In figure 4. we
have presented the Cv of the ordered two-site system as a
function of e–ph coupling for different temperatures. The
figure shows that at low temperatures the specific heat shows a
peak at intermediate coupling. With increasing temperature the

3
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Figure 3. Variation of the kinetic energy −〈K 〉/t with g+ for the
ordered case for different temperatures. Solid line: kBT = 0, short
dashed line: kBT = 1.0, dotted line: kBT = 1.5, dashed–dotted line
kBT = 2.0. t = 2.1 in the energy scale of ω = 1.

Figure 4. Variation of the specific heat (Cv/kB) with g+ for the
ordered two-site Holstein model for different temperatures. Solid
line: kBT = 0.1, long dashed line: kBT = 0.2, short dashed line:
kBT = 0.3, dotted line: kBT = 0.4, dashed–dotted line kBT = 0.5.
t = 2.1 in the energy scale of ω = 1.

peak shifts towards a lower value of g+ and then disappears. At
high temperatures a dip is developed in Cv in the intermediate
coupling region.

It may be noted that at low temperatures the specific heat
is mainly governed by the energy separation of the ground state
and the first excited state of the two-site polaronic system. The
specific heat for a system having only two energy levels with
energy separation (	E), shows a peak at 	E/kBT = 2.58,
and Cv is very small when 	E is far from 2.58kBT . For the
two-site Holstein model the energy separation (	E) between
two lowest eigenenergy levels decreases monotonically with
g+ and becomes negligibly small at strong coupling [23, 24].
At a low temperature and weak e–ph coupling 	E/kBT is
quite large and the corresponding specific heat has a small
value. Cv attains a maximum at an intermediate coupling,
when 	E is ∼2.58kBT , and becomes very small in the strong
coupling region as 	E → 0. At a higher temperature a
higher value of 	E is required to achieve the maximum value

Figure 5. Variation of the kinetic energy −〈K 〉/2t and the
correlation function χ avg

0 with g in the ground state for ordered and
disordered four-site Holstein model. Solid lines: ordered case,
dashed lines: disordered with site potentials (1, 0, 0, 0),
dashed–dotted curves: site potentials (−1, 0, 0, 0). Dotted lines
represent the Drude weight for ordered lattice (top dotted line) and
disordered lattice with site potentials (−1, 0, 0, 0) (bottom dotted
line). Value of the hopping parameter used t = 1.0 in the energy
scale of ω = 1.

in Cv . Since 	E increases with decreasing g+ for the two-site
Holstein model, the peak in Cv is obtained at a lower value of
g+ for a higher temperature. At high temperatures the higher
energy states, in addition to the ground and first excited states,
have significant contributions to the specific heat. This leads to
the absence of the peak and formation of a dip in Cv .

3.2. Four-site system

For the four-site Holstein model, out of the four phonon
modes there are three modes with q �= 0 which couple to
the electron dynamics. These three phonon modes along with
the four electronic states are considered for diagonalization of
the matrix. We have done the numerical diagonalization with
np = 9 per phonon mode and checked that this gives fairly
accurate results in the range of our study presented here.

The kinetic energy and the static correlation function
χ

avg
m = ∑

i χm(i)/
∑

i ni for m = 0, 1, 2 are evaluated as
a function of g for a fixed temperature or as a function of
temperature for different values of g for the four-site system.
In figure 5 the kinetic energy and χ

avg
0 are plotted against

g for the ordered case and for disordered cases with site
potentials (1, 0, 0, 0) and (−1, 0, 0, 0). The potential (1, 0,
0, 0) means the values of εi for i = 1, 2, 3, 4 are 1, 0, 0
and 0, respectively. Figure 5 shows that χ avg

0 is higher for
disordered cases compared to the ordered case, implying that
the polaron becomes a smaller polaron on introduction of the
disorder. The suppression of the kinetic energy due to disorder
is also seen in the figure. For the (−1, 0, 0, 0) case the value
of χ avg

0 is higher and the kinetic energy is lower than those
for the (1, 0, 0, 0) case. In the former case the electron
will tend to be trapped at the site of the negative potential
while for the latter case the electron would try to avoid the
positive potential site. The trapping potential would suppress
the kinetic energy more drastically and favor small polaron

4
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Figure 6. Variation of χ0 and the kinetic energy −〈K 〉/2t with temperature for the ordered four-site Holstein model for different values of g.
Value of the hopping parameter used t = 1.0 in the energy scale of ω = 1.

formation in the presence of e–ph coupling. In the strong
coupling limit the dependence of the kinetic energy and the
correlation function on the disorder strength is very weak. The
reasons are explained in appendix A.

Figure 6 shows the variation of the on-site correlation
function (χ0) and the kinetic energy (−〈K 〉) with temperature
for different g values. For weak and intermediate coupling χ0

increases with increasing temperature. For strong coupling the
effect of temperature is small but opposite (figure 6(a)). This
shows that the lattice deformation associated with the polaron
gets more and more localized with increasing temperature in
the regime of weak and intermediate e–ph coupling, while
for strong coupling the on-site deformation decreases and the
polaron size gets larger with increasing temperature. The
kinetic energy, on the other hand, decreases with increasing
temperature for weak and intermediate coupling and increases
for strong coupling (figure 6(b)). Our results agree with those
of Hohenadler et al [25] who studied the 1d Holstein model
by the quantum Monte Carlo method and observed the same
variation of the kinetic energy with increasing temperature.
We have also studied the ground state and the excited states
of the polaronic system separately. It is found that for small
or intermediate coupling the excited states have lower kinetic
energy and smaller polaronic size than those of the ground
state. For strong coupling, on the other hand, the ground state is
a small polaron with smaller polaronic size and lower kinetic
energy compared to most of the excited states. These result
in lowering of the kinetic energy with increasing temperature
for small and intermediate coupling and enhancement of the
kinetic energy for strong coupling.

In figure 7 we have shown the variation of Cv as a function
of g for the ordered and disordered systems for kBT = 0.1.
The specific heat shows a peak at intermediate coupling,
which is suppressed with increasing disorder strength. Similar
suppression of the specific heat peak due to disorder has also
been observed for the two-site system. In figure 7 we have
also shown the plots of χ avg

0 to show that the specific heat
peak occurs in the region of g where χ avg

0 also undergoes a
sharp change. However, the peak position in Cv , as mentioned
previously, would be mainly decided by the tuning of the
energy separation of two lowest levels of the system with the
thermal energy at low temperatures.

Figure 7. Variation of the specific heat (Cv/kB) and the correlation
functions χ avg

0 with g at a temperature kBT = 0.1 for t = 1.2 for a
different set of site potentials for the four-site Holstein model. Solid
lines: ordered case, dashed line: disordered case with site potentials
(−0.5, 0, 0, 0), and dashed–dotted line: disordered case with site
potentials (−1, 0, 0, 0).

The kinetic energy contains contributions from both the
coherent and incoherent hopping processes [26]. The Drude
weight (in units of πe2) represents the coherent part of the
kinetic energy. The contribution from the incoherent hopping
processes may be found out from the total kinetic energy and
the Drude weight by using the f-sum rule (see appendix B):

−〈K 〉
2

= 〈D〉
2

+ 〈Sreg〉 (13)

where 〈K 〉 and 〈D〉 are the thermal average of the kinetic
energy and the Drude weight, respectively, and

Sreg = t2
∑

n′ �=n

|〈n| ∑i(c
†
i ci+1 − c†

i+1ci )|n′〉|2
En − En′

(14)

is proportional to the contribution to the kinetic energy from
the incoherent hopping processes.

We have studied the effect of e–ph interaction and the
disorder on the Drude weight of the four-site Holstein model.
The variation of the Drude weight with g for the ordered

5
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Figure 8. Plot of the kinetic energy −〈K 〉/2t (solid lines), Drude
weight (D/2t) (dashed lines) and incoherent part of the kinetic
energy (dotted–dashed lines) with kBT for the ordered lattice for
g = 0.1 and 1. The dotted line and the thick dashed line show the
variation of the Drude weight and the incoherent part of the kinetic
energy, respectively, with temperature for the disordered lattice with
site potential (−1, 0, 0, 0) for g = 1. The value of the hopping
parameter used t = 0.5.

and disordered (with site potentials (−1, 0, 0, 0)) systems are
shown in figure 5 to make a comparison with corresponding
plots of the kinetic energy. For the ordered case, the Drude
weight and the kinetic energy have the same values at g = 0.
This indicates that, in the absence of e–ph interaction and
disorder, the entire part of the kinetic energy comes from
coherent hopping. In the range of intermediate to strong
coupling the Drude weight shows an exponential suppression
with increasing g. The kinetic energy, on the other hand, shows
an exponential suppression only in the range of intermediate
coupling and a 1/g2 behavior in the strong coupling region.
For the disordered case, the Drude weight is smaller than the
kinetic energy even at g = 0 because of disorder-induced
incoherent hopping. For strong coupling the Drude weight
almost vanishes for both the ordered and the disordered cases,
and the kinetic energy, consisting of only incoherent hopping,
becomes very weakly dependent on the disorder strength.

We have investigated the effect of temperature on the
coherent and incoherent parts of the kinetic energy by
evaluating the kinetic energy and the Drude weight as a
function of temperature for different values of g. Some
representative plots (for g = 0.1 and 1) are given in figure 8. At
low temperature the kinetic energy as well as the Drude weight
show negligible dependence on temperature, represented by
the flat region of the curves. This flat region is larger for
smaller g. After the flat region the kinetic energy reduces
exponentially with temperature. At high temperatures, where
the Drude weight is very small, the kinetic energy may be fitted
to a function a/T + bT . For a small value of g the value of
b is very small and the kinetic energy varies approximately
as 1/T . In the temperature range 1.5 � kBT � 2.5 the
values of a and b are, respectively, 0.477 and 0.003 for g =
0.1, and 0.376 and 0.012 for g = 1.0. The Drude weight
shows almost exponential dependence on temperature both in
the intermediate and high temperature ranges. A good fit

Figure 9. Variation of the cross-over temperature (Tcross) with g for
t = 0.5 for the ordered case.

to the Drude weight is obtained with a function ae−bT , but
with different values of the parameters a and b in the two
(intermediate and high temperature) ranges. The part of the
kinetic energy arising from incoherent processes increases with
temperature, reaches a peak and then decreases with increasing
temperature.

In figure 8 we have also shown the variation of the Drude
weight and the incoherent part of the kinetic energy with
temperature in the presence of disorder with site potentials
(−1, 0, 0, 0) for g = 1. It is seen that at low temperatures the
effect of disorder is very large on both the Drude weight and
the incoherent part of the kinetic energy. The Drude weight
is rapidly suppressed while the incoherent part is enhanced a
lot with the application of the disorder site potential. At high
temperatures the Drude weight becomes very small for both the
ordered and disordered cases. The disorder has little effect on
the incoherent part of the kinetic energy at high temperatures.

For the ordered case we have determined the cross-over
temperature (Tcross) from the intersection of the curves for the
coherent and the incoherent part of the kinetic energy such that
for T < Tcross the coherent part is dominant and for T > Tcross

the incoherent part is dominant. The variation of Tcross with
g is shown in figure 9. The cross-over temperature decreases
with g. The Tcross versus g curve shows a sudden change in the
gradient at g = 1 for t = 0.5 (this corresponds to the scaled
e–ph coupling λ = g2ω/zt = 1). The rate of fall of Tcross with
g is higher in the region g > 1 than that for g < 1.

We would address now the possible size effect on
the results. In appendix A we have derived a strong
coupling effective polaronic Hamiltonian where the different
coefficients (in equation (A.2)) have no size dependence
provided the number of nearest neighbors (z) is the same. For a
four-site system, z = 2, which is the same as that for an infinite
1d chain. The kinetic energy in the ground state, obtained from
equation (A.2), for z = 2 is given by

KG = −2tp − 4
t2
p

ω

∞∑

n,m=0;n+m�1

g2(n+m)

n! m! (n + m)

− 4
t2
p

ω

∞∑

n=1

g2m

m! m
(15)
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where tp = te−g2
. The above expression clearly shows

that for strong coupling the kinetic energy in the ground
state should not have any size dependence if the number
of nearest neighbors is the same, hence the kinetic energy
for N = 4 will be the same as that for an infinite lattice,
where N is the number of lattice sites. This is completely
consistent with the results obtained in a recent numerical
study by Hohenberg et al [25]. They obtained the same
kinetic energy for N = 4, 8, 16, 32 for large g while a small
size effect is observed for small and intermediate coupling.
With increasing temperature the size effect is even smaller,
as noted in [25]. Other authors [27, 28] have also pointed
out that the size effect is not very significant in shaping
different polaronic properties for the ordered Holstein model.
However, the system size effect on the Drude weight of the
polaronic system in the presence of disorder is not known
to our knowledge and may be the subject of an interesting
study.

4. Conclusions

We have investigated the effect of disorder and temperature
on the properties of a polaron for a two- and four-site
Holstein model. The disorder reduces the polaron size and
suppresses the kinetic energy and the Drude weight. For strong
coupling the polarons are practically immobile and the kinetic
energy arises mainly from the to-and-fro motion of the (bare)
electron between nearest-neighbor sites, keeping the center
of the polaron fixed. In this regime the effects of disorder
on the correlation functions and the kinetic energy are very
small.

Increasing temperature also reduces the polaron size
and suppresses the kinetic energy and the Drude weight for
weak and intermediate e–ph coupling, while for strong e–
ph coupling temperature has the opposite effect, i.e. the
polaron size and the kinetic energy increases with increasing
temperature.

The polaronic specific heat shows a peak in the
intermediate coupling regime at low temperatures. The peak
is suppressed in the presence of disorder.

The polaronic kinetic energy has contributions from
the coherent and the incoherent hopping processes. The
contribution from the coherent hopping (Drude weight) shows
an exponential suppression in the region of intermediate to
strong e–ph coupling. For strong coupling the Drude weight is
very small and the kinetic energy, consisting of the incoherent
part mainly, shows a 1/g2 dependence. For small and
intermediate coupling the Drude weight shows an exponential
suppression with temperature both in the intermediate and high
temperature range. At high temperature the Drude weight is
very small and the kinetic energy, dominated by the incoherent
contributions, shows approximately a 1/T dependence. We
have also identified a cross-over temperature below which
the coherent part of the kinetic energy is dominant and
above which the incoherent part is dominant. This cross-
over temperature decreases with the increase of the electron–
phonon coupling.

Appendix A

Applying the standard Lang–Firsov (LF) transformation to the
Holstein model in equation (1) one obtains

H̄ = eR H e−R

=
∑

i

(εi − εp)c
†
i ci −

∑

i, j

′
tpc†

i c j e
g(b†

i −b†
j )e−g(bi −b j )

+ω
∑

i

b†
i bi (A.1)

where R = ∑
i gni(bi − b†

i ), εp = g2ω is the polaron binding
energy, tp = e−g2

is the polaronic hopping strength and j is a
nearest neighbor of i .

The second term of equation (A.1) represents the kinetic
energy operator which involves zero-phonon as well as
multiphonon processes (in the LF phonon basis) associated
with the hopping of a polaron between nearest-neighbor sites.
In the strong coupling limit, where tp is very small, following a
second-order strong coupling perturbation theory an effective
expression for the kinetic energy terms (within the phonon
ground state) may be obtained as [29]

Hkin = −tp
∑

i, j

′
c†

i c j

− 2zt2
p

∞∑

n,m=0;n+m�1

g2(n+m)

n! m! (n + m)ω

∑

i

c†
i ci

− 2t2
p

∞∑

n=1

g2m

m! mω

∑

i,k

′′
c†

i ck (A.2)

where z is the number of nearest neighbors. The first term
of Hkin represents the coherent hopping of polarons without
emission or absorption of phonons, while the second term
originates from virtual hopping of a polaron from site i to a
nearest-neighbor site j and back. This hopping is associated
with virtual emission of multiphonons at the sites i and j
followed by absorption of all the emitted phonons while
hopping back. In this process the (bare) electron within the
polaron undergoes forward and backward motion between
nearest-neighbor sites, keeping the polaron immobile. The
third term represents an effective hopping of a polaron from
site i to a second nearest-neighbor site k via a common
nearest-neighbor site j where multiphonons are created and
then absorbed. For strong coupling the coefficients of the first
and third terms in equation (A.2) become negligible and only
the second term (∼t2/εp) contributes to the kinetic energy.
In the presence of disorder (n + m)ω in the denominator of
the second term modifies to (n + m)ω ± εd, where εd is the
difference between the site potentials at sites i and j . The
major contributions of this term for strong coupling comes
from multiphonon processes with high values of (n + m)ω
such that (n + m)ω 
 εd. As a consequence of the above
reasons the coefficient of the second term in (A.2) as well as
the kinetic energy in the strong coupling region becomes very
weakly dependent on the disorder potential.

It may be mentioned that equation (A.2) is valid for any
dimension and size of the system. The value of z would be
different for different dimensions.
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Appendix B

The Hamiltonian of the system in the broken time reversal
symmetry may be written as

H (φ) = −
∑

i

(teiφc†
i ci+1 + h.c)+ V (B.1)

where V is composed of the electronic potential and interaction
of electrons with the lattice. Let H0 be the Hamiltonian of
the system when φ = 0, and the corresponding eigenenergies
and eigenstates be E0

n and |ψ0
n 〉, respectively. If En(φ) be the

eigenenergy of the Hamiltonian H (φ), the Drude weight for
the nth eigenstate of the Hamiltonian H0 is [22]

Dn = ∂2 En(φ)

∂φ2

∣∣∣∣
φ=0

. (B.2)

Considering the terms involving φ as a perturbation in
the Hamiltonian (B.1) a second-order perturbation calculation
gives

En(φ) = E0
n − iφt〈ψ0

n |
(

∑

i

c†
i ci+1 − c†

i+1ci

)
|ψ0

n 〉

+φ2t2
∑

n′ �=n

|〈ψ0
n |(∑i c†

i ci+1 − c†
i+1ci )|ψ0

n′ 〉|2
E0

n′ − E0
n

+ φ2t

2
〈ψ0

n |
∑

i

(
c†

i ci+1 + c†
i+1ci

)
|ψ0

n 〉 + · · · . (B.3)

Therefore

Dn = 2t2
∑

n′ �=n

|〈ψ0
n |(∑i c†

i ci+1 − c†
i+1ci )|ψ0

n′ 〉|2
E0

n′ − E0
n

− Kn (B.4)

where
Kn = −t〈ψ0

n |
∑

i

(c†
i ci+1 + c†

i+1ci)|ψ0
n 〉 (B.5)

is the expectation value of the kinetic energy for the nth
eigenstates of the Hamiltonian H0. Taking the thermal average
over all the eigenstates at a temperature T establishes the sum
rule

−〈K 〉
2

= 〈D〉
2

+ t2

〈
∑

n′ �=n

|〈ψ0
n | ∑i (c

†
i ci+1 − c†

i+1ci)|ψ0
n′ 〉|2

En − En′

〉
. (B.6)
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